
Paweł Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/


 Security tokens

 Tokens history

 JSON Web Token

 Why tokens?
 OAuth2?

 Actors

 Client types and profiles

 Registration

 Authorization flows



 A data structure with the following features

 Contains information about an issuer and a 
subject, usually with expiration date

 Signed, sometimes also encrypted

 Typical roles

▪ A client requests a token

▪ An issuer issues a token

▪ A service consumes a token
▪ There is a trust between the client and the service



 Tokens history
 SAML 1.1/2.0

▪ XML based format
▪ Very expressive with many options, including security
▪ Popular in SOAP services

 Simple Web Token (SWT)
▪ Form/URL based format
▪ Very limited possibilities, e.g. only symmetric signatures

 JSON Web Token (JWT)
▪ JSON based format
▪ A new format with a strongly increasing prevalence
▪ Lightweight, however quite expressive
▪ But still SAML is much more expressive



 JSON Web Token
 There are 3 parts

▪ Header, example:

▪ Claims Set, example:

▪ Signature

 The token is concatetion of three parts converted to 
base64url:
▪ <base64url-encoded header>.<base64url-encoded claims>.<base64url-encoded signature>



 Base64 vs Base64url

 Both are intended to encode binary data into ASCII

 However, Base64url is intended to be URL safe

▪ „+” is replaced by „-”

▪ „/” is replaced by „_”

▪ Padding „=„ is usually ommitted
▪ optional, but not recommended

 More: http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64


 JSON Web Token, claims
 There are 3 sets of claims

▪ Registered in IANA (like iss, iat, exp, …)
▪ Public claim name
▪ Private claim name

 Common claims
▪ "iss" (Issuer)
▪ "sub" (Subject)
▪ "aud" (Audience)
▪ "exp" (Expiration Time)
▪ "nbf" (Not Before)
▪ "iat" (Issued At)
▪ "jti" (JWT ID) Claim

 Documentation
 http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html


 More about standards
 JSON Web Algorithms (JWA)

▪ Details on algorithms around the JWT, JWS, JWE, JWK

 JSON Web Key (JWK)
▪ Data structure represting keys for singing and encryption

 JSON Web Token (JWT)
▪ Data structure for representing claims

 JSON Web Encryption (JWE)
▪ Encrypted JWT

 JSON Web Signature (JWS)
▪ Signed JWT

 Corollary: a JWT on slide 5 was actually JWS



 We consider 2 main approaches for authN

 Cookie-based authentication

▪ In a cookie is only session ID

▪ Whole information about an user is in session on a server

 Token-based authencation

▪ Whole information about an user is in token

▪ There is no session needed – authN is stateless



 What main arguments do we have for tokens?

 Cross-domain

▪ If we use HTTP header, cross domain is easily achievable

 Stateless

▪ No session is needed

 SRP

▪ Authentication process is separated from serving data

▪ There is no coupling between token issuer and consumer

 Mobile compatible

▪ Most of current mobile technologies are tokens-oriented



 JwtConsumer + JwtClient



 Let’s imagine the following scenario
 You have an account on Google

 You found a very fancy calendar application on 
your phone market

 You want to use it, but don’t want to give the 
application permission to all Google account data 
(e.g. mails, contacts, etc. – only calendar entries)

 In this scenario we consider 3rd party 
application which is considered as untrusted
 And this is the place when the OAuth2 helps



 Actors

 Resource server

▪ Service which is protected and understands tokens

 Resource owner

▪ User

 Client

▪ 3rd party application

 Authorization server

▪ The one who issues tokens



 Client types and profiles

 We consider 2 types of clients

▪ Confidential
▪ Take place if client secret is known only for client application

 Especially is not shared with resource owner

▪ Public
▪ The opposite situation



 Client types and profiles

 Protocol emphasizes 3 types of clients

▪ Server-side web application

▪ Client-side application running in a web browser

▪ Native application



 Client types and profiles

 Protocol emphasizes 3 types of clients

▪ Server-side web application
▪ The application makes API

calls using a server-side
programming language

▪ The user has no access to the 
OAuth client secret or any 
access tokens issued by the 
authorization server

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

 Client-side application running in a web browser

▪ The application makes API calls form web browser
technology like JavaScript or Flash

▪ Usually it is a SPA-like app
hosted on web server, but 
run fully in a web browser

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

 Native application

▪ Similar solution as client-side application

▪ Usually it is desktop or mobile application

▪ Difference is that everything is
stored on user’s device

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Registration
 Usually in real world, an application (client) needs to 

register in the resource server

 On other words, there is a trust between client and 
resource server, client authenticates in RS

 As a outcome, usually client gets
▪ Client ID

▪ Client Secret

 Additionally with client application a redirect URI is
associated
▪ Used when user (resource owner) successfully authenticates

on authorization server



 Authorization flows

 Authorization Code Flow

 Implicit Flow

 Resource Owner Credential Flow

 Client Credential Flow



 Authorization Code Flow

 Dedicated for web applications

 Client can store secret securely on the server

 Access token never send to the browser

 Tokens

▪ Access token: short time, gives access to resource

▪ Refresh token: long time, allows to get a new access token

 This is most often used flow



 Authorization Code Flow

Source: http://blog.cloudfoundry.com/author/dsyer/

http://blog.cloudfoundry.com/author/dsyer/


 Implicit Flow

 Dedicated to desktop, 
SPA and mobile 
applications

 Very similar to code
flow, but there is no 
code, access token is
sent directly to device

 There is no refresh token

Source: http://tutorials.jenkov.com/oauth2/authorization.html

http://tutorials.jenkov.com/oauth2/authorization.html


 Resource Owner Credential Flow
 In previous flows authentication is performed on AS

 In this case client directly authenticate on AS
▪ Client get the username and password and use it for 

authentication

▪ Client should forget the password after authentication
▪ What means, that client application must be trusted

 Authorization response
▪ with access & refresh token

 Client app use access token to access resources



 Client Credential Flow

 Use for “service to service” communication

 Client application itself ask AS for token

 Client apps doesn’t do this “on behalf” of some 
user – there is no user involved.



 Summary of use cases
 Web-server applications
▪ Authorization code flow

 Browser based applications
▪ Implicit flow

 Username/password access
▪ Resource Owner Credential Flow

 Mobile applications
▪ Implicit flow

 Application access
▪ Client credentials flow



 Let’s see the movie

 http://www.youtube.com/watch?v=io_r-0e3Qcw

 Let’s take a look at Google OAuth2 Playground

 https://developers.google.com/oauthplayground/

http://www.youtube.com/watch?v=io_r-0e3Qcw
https://developers.google.com/oauthplayground/


 Tokens consideration
 https://auth0.com/blog/2014/01/07/angularjs-authentication-with-

cookies-vs-token/
 https://auth0.com/blog/2014/01/27/ten-things-you-should-know-

about-tokens-and-cookies/
 http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
 http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
 https://developer.atlassian.com/static/connect/docs/concepts/underst

anding-jwt.html
 http://msdn.microsoft.com/en-us/library/gg185950.aspx
 http://www.slideshare.net/briandavidcampbell/owasp-vancouver
 http://stackoverflow.com/questions/18677837/decoding-and-verifying-

jwt-token-using-system-identitymodel-tokens-jwt
 http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-

tokens/

https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver
http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-system-identitymodel-tokens-jwt
http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/

