Pawet Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

Application Security
Security tokens & OAuth2

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

Security tokens
Tokens history
JSON Web Token

Why tokens?
OAuth2?

Actors

Client types and profiles
Registration
Authorization flows

Security tokens

A data structure with the following features

Contains information about an issuer and a
subject, usually with expiration date

Signed, sometimes also encrypted

Typical roles
A client requests a token
An issuer issues a token

A service consumes a token
There is a trust between the client and the service

Security tokens

Tokens history

SAML 1.1/2.0
XML based format
Very expressive with many options, including security
Popular in SOAP services

Simple Web Token (SWT)

Form/URL based format

Very limited possibilities, e.g. only symmetric signatures
JSON Web Token (JWT)

JSON based format

A new format with a strongly increasing prevalence

Lightweight, however quite expressive
But still SAML is much more expressive

Security tokens

JSON Web Token

There are 3 parts
Header, example:

{ lltyp" . "JWT"r
"alg":"HSZ256"}

Claims Set, example:

{"iss":"Joe",
"exp":1300819380,
"http://example.com/is root":true}

Signature

The token is concatetion of three parts converted to
base6url:

<baseb4url-encoded header>.<base64url-encoded claims>.<base64url-encoded signature>

Security tokens

Base6y4 vs Base64url
Both are intended to encode binary data into ASCI|
However, Base64url is intended to be URL safe

.+"isreplaced by ,-"
.[" is replaced by ,,_"

Padding ,=, is usually ommitted
optional, but not recommended

More: http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64

Security tokens

JSON Web Token, claims

There are 3 sets of claims
Registered in IANA (like iss, iat, exp, ...)
Public claim name
Private claim name

Common claims
"iss" (Issuer)
"sub" (Subject)
"aud" (Audience)
"exp" (Expiration Time)
"nbf" (Not Before)
"iat" (Issued At)
"jti" JWT ID) Claim
Documentation

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Security tokens

More about standards
JSON Web Algorithms (JWA)
Details on algorithms around the JWT, JWS, JWE, JWK
JSON Web Key (JWK)

Data structure represting keys for singing and encryption

JSON Web Token (JWT)
Data structure for representing claims
JSON Web Encryption (JWE)
Encrypted JWT
JSON Web Signature (JWS)

Signed JWT
Corollary a JWT on slide 5 was actually JWS

Why tokens?

We consider 2 main approaches for authN
Cookie-based authentication

In a cookie is only session ID
Whole information about an user is in session on a server
Token-based authencation

Whole information about an user is in token
There is no session needed — authN is stateless

Why tokens?

What main arguments do we have for tokens?

Cross-domain

If we use HTTP header, cross domain is easily achievable

Stateless

No session is needed

SRP

Authentication process is separated from serving data
There is no coupling between token issuer and consumer

Mobile compatible
Most of current mobile technologies are tokens-oriented

JwtConsumer + JwtClient

Let's imagine the following scenario
You have an account on Google

You found a very fancy calendar application on
your phone market

You want to use it, but don’t want to give the
application permission to all Google account data
(e.g. mails, contacts, etc. —only calendar entries)

In this scenario we consider 3rd party
application which is considered as untrusted

And this is the place when the OAuth2 helps

Actors

Resource server

Service which is protected and understands tokens

Resource owner

User
Client

3rd party application
Authorization server

The one who issues tokens

Client types and profiles

We consider 2 types of clients

Confidential

Take place if client secret is known only for client application
Especially is not shared with resource owner

Public

The opposite situation

Client types and profiles

Protocol emphasizes 3 types of clients
Server-side web application
Client-side application running in a web browser
Native application

Client types and profiles

Protocol emphasizes 3 types of clients

Server-side web application

The application makes API
calls using a server-side
programming language

The user has no access to the
OAuth client secret or any &
access tokens issued by the

authorization server Resource
Dwner

Source: http://tutorials.jenkov.com/oauth2/client-types. html

Confidential Client:
Web Application

L

Client Password

Resource
Server

-
‘

_,.E.
Authorization
Server

http://tutorials.jenkov.com/oauth2/client-types.html

Client types and profiles

Client-side application running in a web browser

The application makes API calls form web browser
technology like JavaScript or Flash

Usually it is a SPA-like app ebsTe posting - Resouee

hosted on web server, but Fublic Client .
_ ser Agent ; —

run fully in a web browser Applicafion el E

-
A

o S
Res@urce Chent 1D _}'El

Owner Client Password

Source: http://tutorials.jenkov.com/oauth2/client-types. html Aug‘gﬁeﬂ:' on

http://tutorials.jenkov.com/oauth2/client-types.html

Client types and profiles
Native application

Similar solution as client-side application
Usually it is desktop or mobile application

Difference is that everything is
/ . Public Client:
stored on user’s device Native Application

&
= <

Resource
Server

-

s
F Y

Resﬂurce Client 1D
Owner Client Passwaord

Source: http://tutorials.jenkov.com/oauth2/client-types. html

L E.
Autharization
Server

http://tutorials.jenkov.com/oauth2/client-types.html

Registration

Usually in real world, an application (client) needs to
register in the resource server

On other words, there is a trust between client and
resource server, client authenticates in RS

As a outcome, usually client gets
Client ID

Client Secret

Additionally with client application a redirect URI is
associated

Used when user (resource owner) successfully authenticates
on authorization server

Authorization flows

Authorization Code Flow
Implicit Flow

Resource Owner Credential Flow
Client Credential Flow

Authorization Code Flow
Dedicated for web applications
Client can store secret securely on the server
Access token never send to the browser

Tokens
Access token: short time, gives access to resource
Refresh token: long time, allows to get a new access token

This is most often used flow

Authorization Code Flow

ResourceServer

200: result

User Client AuthServer
GET /peek ’h
J‘ 302: location=auth/authorize
GET lfauthorize L
J‘ {messages: "IIZ)D you approve?'} 7
a;l:hprwe i
J‘ 302: Ic:-n:atior*-:client-fh?andle code?code=dkshfjg 7
GET /handle EDEIE?CDUE:dkshfjg’L
POST: foken?code=dkshfjg

<ZDD: {access_token:CNMBWVCXKNY}
[

GET /resource(access_token)

I
200: response

4

User

Client

AuthServer

ResourceServer

Source: http://blog.cloudfoundry.com/author/dsyer/

www.websequencediagrams.com

http://blog.cloudfoundry.com/author/dsyer/

Implicit Flow

Dedicated to desktop,
SPA and mobile

applications

Very similar to code
flow, but there is no
code, access token is
sent directly to device

There is no refresh token

Source: http://tutorials.jenkov.com/oauth2/authorization.html

1. Access App

.l

4l

2. Login via
Auth Server
3. Login via
Auth Server -
. .
h 4 Redirect to
Client Redirect
LRI, + Auth. Code.
5. Access

Redirect URI +
Access Token

Ll

g. Logged in

Resource |
Server

http://tutorials.jenkov.com/oauth2/authorization.html

Resource Owner Credential Flow

In previous flows authentication is performed on AS

In this case client directly authenticate on AS

Client get the username and password and use it for
authentication

Client should forget the password after authentication
What means, that client application must be trusted

Authorization response
with access & refresh token

Client app use access token to access resources

Client Credential Flow
Use for “service to service” communication

Client application itself ask AS for token

Client apps doesn’t do this “on behalf” of some
user —there is no user involved.

Summary of use cases
Web-server applications
Authorization code flow
Browser based applications
Implicit flow
Username/password access
Resource Owner Credential Flow
Mobile applications
Implicit flow

Application access
Client credentials flow

Let’s see the movie

http://www.youtube.com/watch?v=io_r-oe3Qcw

Let’s take a look at Google OAuth2 Playground

https://developers.google.com/oauthplayground/

http://www.youtube.com/watch?v=io_r-0e3Qcw
https://developers.google.com/oauthplayground/

References

Tokens consideration

https://autho.com/blog/2014/01/07/angularjs-authentication-with-
cookies-vs-token/

https://autho.com/blog/2014/01/27/ten-things-you-should-know-
about-tokens-and-cookies/

http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

https://developer.atlassian.com/static/connect/docs/concepts/underst
anqu jwt. html

http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver

http://stackoverflow.com/questions/18677837/decoding-and-verifying-
jwt-token-using-system- |dent|tvmodel tokens-jwt

http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-

tokens/

https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver
http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-system-identitymodel-tokens-jwt
http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/

